学科分类
/ 25
500 个结果
  • 简介:对用醋酸钾作催化剂,以苯甲醛和醋酸酐为原料,通过Perkin反应制备肉桂酸进行了研究,经正交试验得出反应的最佳工艺条件:苯甲醛/醋酸酐摩尔比1∶3,催化剂用量6g,反应时间2h,反应产率48.59%.

  • 标签: 醋酸钾 催化合成 肉桂酸 催化剂 正交试验
  • 简介:本文介绍了DOTP[对苯二甲酸二(2-乙基己)酯]的现状及发展前景,并报导了一种优于现有工艺、用酞酸四丁酯和硅酸四烷基酯复合催化合成DOTP的新方法。

  • 标签: DOTP 非酸催化 制备 应用
  • 简介:利用相转移催化剂氯化三乙基苄基铵,在碱性条件下,以高锰酸钾氧化环己醇制备己二酸,反应条件温和,不产生有毒气体,速度快,产率高.

  • 标签: 相转移催化 合成 己二酸 催化剂 溶剂
  • 简介:综述了对甲苯磺酸、氨基磺酸、强酸性阳离子交换树脂、六水氯化铁、二水氯化亚锡、十二水硫酸铁铵、一水硫酸氢钠、硫酸钛、固体超强酸、杂多酸和分子筛等催化催化丁酸正丁酯的合成方法,并建议对近年来开发的有应用前景的催化剂进行扩大试验与筛选.

  • 标签: 固体酸 催化合成 丁酸正丁酯 催化剂
  • 简介:采用气相传输法,以金膜为催化剂,氧化锌和石墨混合粉末为锌源,制备氧化锌纳米材料。研究获得氧化锌纳米线的光致发光性能。初步探索了氧化锌纳米线的生长机理。实验结果表明,当衬底温度为600℃时,金颗粒的催化性能得到了较好的发挥,形成长度大于10μm,直径小于80nm的均匀致密的氧化锌纳米线膜。这种氧化锌纳米线具有紫外发光特性。低于600℃时,锌氧蒸汽发生了自凝结,进而在金颗粒间隙形成氧化锌带(400℃时),或在金颗粒上吸附聚集形成花状氧化锌纳米棒(200℃时)。而在高于600℃时,金颗粒析出的锌迅速挥发或氧化、长大,出现了稀疏的针状氧化锌和颗粒。氧化锌纳米线可能的生长模式为"底端生长"模式。

  • 标签: ZNO 纳米线 衬底温度 光致发光 生长机理
  • 简介:以内桂酸和正丙醇为原料,用钼镍粉催化催化肉桂酸正丙酯。经实验确定了最佳条件:n(n-正丙醇)/n(肉桂酸)=1.5,催化剂用量为反应物总质量的4%,反应时间为4h,反应温度85~95℃,肉桂酸正丙酯收率80%以上,催化剂可重复使用,催化活性变化不大。

  • 标签: 钼镍催化剂 肉桂酸正丙酯 酯化
  • 简介:在一硫酸氢钠催化下由柠檬酸和正丁醇合成了柠檬酸正丁酯。当柠檬酸、正丁醇和硫酸氢钠的物质的量比为125:11:1,在150℃温度下,回流4h时,酯化率达93.3%。

  • 标签: 硫酸氢钠 柠酸正丁酸 催化 合成 酯化率 测定
  • 简介:四氯化锡可代替硫酸作为酯化催化剂.在五水四氯化锡催化合成了肉桂酸甲酯,并用熔点、元素分析和红外光谱进行了表征.当肉桂酸、甲醇和四氯化锡的摩尔比为1∶7.5∶0.3,回流反应3h,酯收率达89.2%.

  • 标签: 四氯化锡 催化合成 肉桂酸甲酯 酯化催化剂
  • 简介:湖北汉星化工新材料有限公司承担的复合催化炔丙基磺酸钠项目,日前经湖北省科技厅鉴定,其产品综合技术水平达到国内领先.

  • 标签: 催化合成 磺酸钠 炔丙基 国内 项目 复合
  • 简介:用固载杂多酸PW12/SiO2为催化剂,实现了肉桂酸与异戊醇反应合成肉桂酸异戊酯。最佳合成条件为:n(酸):n(醇)=1:2,催化剂用量为肉桂酸质量的5%,反应时间为3h,产率可达95%。催化剂具有容易回收并可循环使用、不污染环境等优点。

  • 标签: 固载杂多酸催化剂 PW12/SiO2 催化酯化 肉桂酸异戊酯 酯化合成
  • 简介:以固体超强酸为催化剂,采用微波辐射技术,由间苯二酚与乙酰乙酸乙酯缩合制备香豆素衍生物7-羟基-4-甲基香豆素.结果表明,微波辐射固体超强酸催化香豆素衍生物最佳反应条件为:间苯二酚0.2mol,乙酰乙酸乙酯0.2mol,固体超强酸催化剂0.5g,微波功率210W,微波辐射时间6min,收率92.5%.

  • 标签: 微波辐射 固体超强酸催化剂 香豆素衍生物 间苯二酚 乙酰乙酸乙酯
  • 简介:采用回流吸附法和饱和浸渍法制备负载型杂多酸PW12/C,分别以γ-AI2O3和Y-分子筛为载体制备负载型杂多酸PW12/γ-AI2O3和PW12/γ-AI2O3分子筛,用红外光谱对催化剂进行了表征.将制得的各种催化剂用于催化乙酸乙酯并进行筛选.结果表明PW12/γ-AI2O3和PW12/γ-AI2O3分子筛的活性远远低于PW12/C.将PW12/C用于乙酸乙酯的合成,并优化出最佳的反应条件.

  • 标签: 乙酸乙酯 合成反应 催化剂 负载型杂多酸
  • 简介:2001年诺贝尔化学奖奖给美国化学家诺尔斯、夏普莱斯和日本化学家野依良治,表彰他们在不对称催化研究方面的开创性工作,这一工作不仅解决了长期以来进行化学合成时总是得到外消旋体的困惑,而且随着研究深入,研究范围的扩大,很快应用到生产上,为制药、农药、香料等工业带来巨大的效益,本文简介了与之有关的内容.

  • 标签: 不对称催化合成 2001年 诺贝尔化学奖 生物体 不对称催化还原 不对称催化氧化