机电一体化智能控制

(整期优先)网络出版时间:2022-09-21
/ 2

机电一体化智能控制

王文伟  ,杨洪滔

长城汽车股份有限公司   河北省保定市  071000

摘要:在信息化时代已融入人们生活的当下,自动化智能控制已成为企业和工程普遍运用的手段。智能控制技术在工作中不断发展、创新,现如今已经攻克时变性、非线性、多层次性等多种困难,复杂的问题,使机电一体化系统得到实现。智能控制在机电一体化系统中做出的贡献大大的提高了工作效率,为机电行业发展做出了非常大的贡献,得到了广泛的推崇。但发展还是要继续的,为了其功能能更加完善,不断适应这个变化更新速度极快的世界,还应继续对智能控制在机电一体化中的应用进行深入分析和探讨,为其不断发展和创新,技术升级做好充足准备。

        关键词:机电一体化;智能控制;传统控制

  一、智能控制理论和系统概要

        控制理论经历了反馈并传递函数的古典控制理论,到分析状态空间的现代控制理论,再到综合了自动控制、人工智能、信息论、运筹学等关于优化调控方式理论学科形成的智能控制理论三个阶段,而智能控制理论是控制理论发展至今的最高阶段。智能控制理论解决了传统控制理论的缺陷和问题,对传统控制理论无法实行控制的复杂系统采用分布式以及开放式结构解决机电一体化系统的控制难题。

二、关于机电一体化的概述

        2.1 机电一体化的含义

        机电一体化即结合应用机械技术和电子技术于一体。随着计算机技术的迅猛发展和广泛应用,机电一体化技术获得前所未有的发展,成为一门综合计算机与信息技术、自动控制技术、传感检测技术、伺服传动技术和机械技术等交叉的系统技术,目前正向光机电一体化技术方向发展,应用范围愈来愈广。

        2.2 机电一体化的基本内容与组成要素及原则

        机电一体化的基本内容包括以下几项内容:一是,计算机与信息技术;二是,机械技术;三是,自动控制技术;四是,系统技术;五是,传感检测技术。

机电一体化的组成要素包括:一是,结构组成要素;二是,动力组成要素;三是,运动组成要素;四是,感知组成要素;五是,职能组成要素。

机电一体化的四大原则包括:一是,运动传递;二是,能量转换;三是,结构耦合;四是,信息控制。

    三、智能控制与传统控制的区别

       3.1理论和功能的扩展。智能控制突破了传统控制的局限性,完善了传统控制的弊端,解决了一些复杂实际问题,使控制系统更加高效的工作。智能控制系统的创新主要在于其运用采取了分布式和开放式结构相结合的方法,使其将信息系统的,综合的,完善的进行处理,使管理更加有效。从而,使管理系统不止可以实现对整体一些方面的高度自治,还可以使全局得到统筹和优化。

       3.2内容的改变和优化。智能控制不在依循传统控制中以反馈控制理论为核心理论这一理念,而是结合调控理论各个不同方面,不同学科的理论,总结归纳,创新改进。从而使智能控制形成一套包括自动控制理论、人工智能理论、运筹学、信息论,相互结合,相互交错,相互补助的基础理论。

       3.3应用范围的增强与拓宽。智能控制通过技术的更新,覆盖范围更广,内置系统更强劲,可以解决一些较为复杂问题。突破传统控制只能解决简单,单一,线性的问题,对控制系统有了极大的改善。目前,智能控制主要把问题目标锁定在一些层次较多,不确定因素存在,时变性强,非线性等的较为困难,复杂的问题上,以便更好的,快速的解决问题。

      3.4表达方式的更新。智能控制不再采用通过运动学方程、动力学方程及传递函数等数学模型来描述系统工作的方式,而是在此基础上,除对数学模型的描述外,还结合了对符号和环境的识别和设计数据库和推力器。这样,将这些综合起来作为智能控制的重点,才能更全面的控制系统,提高其工作效率。

       四、智能控制在机电一体化系统中的应用

        4.1智能控制在机电一体化系统中的应用优势

        智能控制已得到机电一体化系统的广泛认可和应用,并正在慢慢取缔着传统的控制技术,主要是因为其在机电一体化的应用中表现出来的有别于传统控制技术的优势,主要有:(1)优化效能。对于群控系统可以借助相关操作流程使系统的调整符合标准及要求;(2)程序控制。系统根据产品所需尺寸及精度编制操作程序指令进行运行;(3)改进加工。可以通过优化操作流程并缩短加工时间来实行复合加工,改进并优化了加工程序。

        4.2智能控制在机电一体化系统中的实际应用

        (1)机械制造中的智能控制

        以经典的机械理论和计算机辅助技术并结合智能控制方法,在机电一体化系统的制造过程中形成了新型的机械制造工艺,并不断向智能制造系统方面发展。智能控制技术解决了现代较为先进的制造系统必须依靠不够精准和完备的数据来处理无法预测状况的问题,利用神经网络和模糊数学的方法,建立制造过程的动态模型,并以神经网络的学习和并行处理信息的能力实行在线的模式识别操作,对残缺不全的信息进行及时有效处理。

        (2)电力电子学研究领域中的智能控制

        包括变压器、电动机、发电机在内的电机电器设备在规划设计、投入生产、实际运行及控制过程等方面都是相当复杂的。将智能控制技术引入电力系统,在电机电器设备的优化设计、故障控制和诊断等方面,都相当有成效。对电器设备的设计优化,可用先进的遗传算法进行优化计算,能大幅度缩短计算时间,有效节约成本,并提高电机电器的设计质量和效率。而神经网络系统以及模糊逻辑专家系统是在电机电器设备的故障控制和诊断中所应用的智能控制技术。

        智能控制在电力电子学应用领域中发挥重要作用的最具代表性的现象是其在电流控制技术中的广泛应用,智能控制技术在电力系统中的应用方向是电力电子学研究领域极具研究价值的一个项目,可以推动电力电子领域的进步和电力系统不断的发展。

       4.3对智能控制的研究展望

        智能控制是一种新型的控制技术,是在机电一体化技术工作运行之中不断总结,发展,创新出来的,其应用较为晚一些。但通过各方面,各领域的不断研究,分析,使该控制技术得到了很好完善和改进,使其在应用中取得了不错的成效。但止步于此是远远不够的,在科学技术更新速度如此之快的当下,对机电一体化的技术要求也在增加,智能控制技术所面临的挑战和问题也就随之增多,复杂起来。所以,不断加强对智能控制技术的探究和更新刻不容缓,要全面提高各方面的技术水平,完善不足,使其更好的在机电一体化系统中实现其作用,体现其价值。

结束语:

        智能控制技术的应用使点击一体化系统改变了传统机械自动化运营和管理上的老旧模式,减少了弊端,提高了工作效率。现如今,机电一体化技术随经济和科技的发展也在大步迈进,而智能控制技术则是跟随发展产生在机电一体化 系统应用中一项重要的创新技术。这项控制技术不断发展其性能,水平,使其各方面提高,从而达到高效率控制。鉴于此,机电一体化偏向于采用此智能控制技术,通过此合理且科学的控制技术,使整个机电一体化技术系统得到完善和发展。除此以外,还是信息化,智能化的优势进入人们的生产生活,极大的促进了社会发展,经济进步。

        参考文献:

        [1]罗杨宇.机电系统的智能控制技术[J].机电一体化,2008,(3).

        [2]杨鹤年.机电一体化系统中的智能控制技术[J].煤炭技术,2011,(7).

        [3]晏建新.智能控制在机电一体化系统中的应用[J].中国科技博览,2011,(30).