电厂锅炉燃烧优化及应用

(整期优先)网络出版时间:2020-12-07
/ 2

电厂锅炉燃烧优化及应用

徐超

华能新疆吉木萨尔发电有限公司 新疆维吾尔自治区昌吉回族自治州 831110

摘要:火力发电是我国发电的主要方式,2019年我国电厂发电总量71422.1亿kWh,其中火力发电量为51654.3亿kWh,火力发电占总发电量的72.3%。锅炉作为电厂三大设备之一,其燃烧状态直接影响发电机组效率及锅炉的安全稳定性,并且炉内燃烧状态影响着污染物NOx的产生量。为了提高锅炉燃烧效率并有效降低污染物排放量,相关技术人员需要对锅炉进行燃烧优化,从而兼顾锅炉燃烧运行的经济性与环保性。

关键词:火电厂;锅炉;燃烧优化;关键技术

1目前电厂锅炉燃烧运行过程中存在的问题

1.1燃烧热效率问题

烟气含氧量是锅炉运行状态的重要表征参数,含氧量过小炉膛煤粉无法充分燃烧,含氧量过大又将导致炉温降低,影响炉膛热效率。

1.2煤粉燃烧不稳定

煤粉燃烧不稳定,火焰中心偏移炉膛中心,火焰贴墙将引起水冷壁结渣、燃烧器受损,极端情况下甚至会诱发锅炉爆炸造成安全事故等。另外燃烧不稳定会导致炉膛热效率降低,产生更多的NOx。

1.3控制NOx排放与提高锅炉燃烧效率两者间的矛盾

为了解决炉膛煤粉燃烧不充分问题,需要提高烟气含氧量及炉膛整体温度,但含氧量增多及高温又引起了NOx的生成量增加。

1.4排烟影响电厂锅炉运行

锅炉燃烧过程中会产生大量烟气,排烟过程是稳定锅炉燃烧状态有效方式之一,但在排烟过程中会出现较多热损失,热量通过排烟的方式快速消失,锅炉内的热量不断较少、温度不断降低,为使锅炉保持在稳定状态需要投入更多的燃料,一旦投入的燃料超过锅炉的承受能力,锅炉运行将出现不稳定情况。排烟过程中出现热损失,一方面与使用的燃料种类有关,另一方面与燃烧条件有关,包括燃料的燃烧面积、燃烧温度以及送风量等,如果燃料含有较高的水分,在燃烧过程中会增加排烟量,从而出现更多的热损失。

1.5测量手段欠缺,风、粉、灰测量不到位

为使锅炉运行更加稳定,需将风速、煤粉量及飞灰可燃物控制在合理范围内,采用测量方法对其进行测量。但热电厂在测量时,由于测量手段有限未能精准测量煤粉量,风速以及飞灰可燃物测量可能与实际偏差值较大,致使锅炉无法稳定的运行。以测量锅炉内的飞灰可燃物为例,主要测量灰中的碳含量,如碳含量超标证明锅炉内的煤炭未能充分燃烧。此外在实际测量工作中,受到锅炉运行状态、自然条件等因素的影响,会导致测量数据存在较大的误差,并且测量设备受到损害,长期使测量精度不断下降。

2电厂锅炉燃烧优化技术

2.1调整锅炉燃料量控制

对投入到锅炉内的燃料量进行控制,需按照以下要求进行:操作人员应掌握锅炉机组在运行时负荷状态,根据负荷状态向锅炉内投放燃料;根据投放燃料量控制送风量;调整粉煤的投入量可提高燃料的燃烧效率;设立监控系统,实时监控锅炉的燃烧状态,将监测数据传输至中控设备,由中控设备发出指令使锅炉可保持在稳定的运行状态。

2.2调整锅炉燃烧送风量

对锅炉燃烧时的送风量进行调整,可使锅炉内的燃料燃烧的更加充分。如送风量过大,锅炉内的燃料燃烧时会出现结焦情况。此外许多锅炉在燃烧过程中无法保证二次送风量是否满足锅炉燃烧需求,二次送风量对锅炉燃烧产生较大的影响。现阶段锅炉运行通过控制二次送风量可使锅炉内的氧气量保持在3~6%范围内,在精准调控氧气量的同时,还能获得良好的调整效果。

2.3优化引风控制系统

对锅炉运行时风控制系统运行状态进行优化,主要优化引风控制系统,有助于锅炉保持在良好的运行状态。在建立引风系统过程中,应对锅炉燃烧时产生的负压进行测量,通过测量可以获得的数值充分发挥引风系统的优势,提高对锅炉内风量的控制,从而提高锅炉的燃烧效率。引风系统运行过程中,由炉膛内的负压监测装置对锅炉炉膛内的负压进行监测,将产生的监测信号传输至自动系统,系统会根据炉内负压进行调节引风量。当锅炉负荷增加时送风量增加,可自动调整引风机频率保证合适的炉膛负压,进一步保证锅炉运行稳定。

2.4降低排烟损失的相关策略

首先,全面掌握锅炉的运行状态,防止锅炉出现漏风情况。在掌握锅炉是否出现漏风情况时,应详细记录锅炉内配置的各种监测设备,包括排烟温度、炉膛出口氧量表等。此外应测量水封槽水位,如水位波动较为明显证明锅炉存在漏气情况。操作人员应检查孔门和火孔的密封性,如上述构件存在泄漏情况应及时封堵;其次,应时刻清理炉膛内的渣灰,根据渣灰量掌握排烟热损失情况。

2.5减少锅炉燃料未完全燃烧造成的热损失影响

如果锅炉内的燃料未能充分燃烧会出现较为严重的热损失情况,为此需对影响燃料燃烧的因素进行分析,包括燃料量、送风量、引风量及外界条件等。首先应控制输送至锅炉内的送风量,锅炉保持在稳定运行状态后调整引风量,并且调整锅炉内的空气系数,可以提高燃料的燃烧效率,避免锅炉内出现严重的热损失情况;其次应根据锅炉燃烧状态精准调控锅炉内的二次风量,在控制的同时还应保持锅炉内充足的氧气,使产生的高温烟气可以充分利用。

2.6优化飞灰中可燃物浓度

锅炉在燃烧期间,燃料燃烧会产生较多未能充分燃烧的可燃物质,使锅炉内飞灰中含有较多的可燃物,其会影响锅炉的燃烧效率。锅炉飞灰中可燃物含量较高,一方面是制粉系统运行效率较低、未能对燃料进行充分的粉碎,另一方面锅炉内的风量控制存在问题,锅炉内未能处于充分燃烧状态,可燃物含量不断提高。优化飞灰中可燃物浓度需对锅炉内的飞灰可燃物进行测量,在测量的同时,协调锅炉燃烧过程与送风量间的关系,使二者保持在合适的状态。

2.7对二次风量和燃尽风量的优化

在锅炉燃烧过程中需优化锅炉内的二次风量和燃尽风量。在优化二次风量过程中,一般在锅炉内安装二次风箱设备,该设备可实时调节锅炉内的二次风量。在优化燃尽风量时,在锅炉内安装燃烧器,利用燃烧器内的中次级波纹管,在向锅炉内提供氧气的同时还能提高燃烧化学计量比,根据计量比掌握锅炉的运行状态。

3燃烧优化技术发展趋势

先进检测技术与智能控制技术,这两种技术在锅炉优化方面都已有很多应用且取得了较好的优化效果,但目前两者并没有被很好地结合并应用在锅炉优化中,如果可以将这两种技术紧密结合、互为支撑,炉膛检测结果为智能算法提供优化数据依据,智能算法对检测结果进行分析并生成优化指令,锅炉将取得更好的燃烧优化效果。例如根据炉膛平面各区域的温度值及火焰中心偏向,并结合智能算法实时生成优化指令,从而调整煤粉燃烧参数及锅炉脱硝系统尿素喷洒量,则可实现在提高锅炉燃烧效率及稳定性的同时降低污染物排放量及减排成本。

4结语

锅炉的燃烧状态影响着整个机组的运行效率及电厂的发电效率,并且由煤粉燃烧产生的NOx会造成环境污染,因此对火电机组而言很有必要采用一定的优化技术对锅炉进行燃烧优化,在提高锅炉燃烧效率的同时控制污染物排放,从而保证锅炉经济、平稳、低污染的运行。

参考文献

[1]周厚峰.火电厂锅炉低氮燃烧改造及运行优化调整分析[J].精品,2018,(08):212-213.

[2]赵云凯.火电厂锅炉低氮燃烧改造及运行优化调整[J].百科论坛电子杂志,2019,(06):428-430.

[3]唐利兴.火电厂锅炉低氮燃烧改造及运行优化分析[J].机械管理开发,2018,33(01):63-64.

[4]王秋粉,王毅岩.火电厂锅炉低氮燃烧改造及运行优化调整[J].山东工业技术,2019,284(06):210-212.

[5]杨永.浅谈火电厂锅炉低氮燃烧改造与运行优化调整[J].名城绘,2019(07):216-217.