智能电网环境下电力系统继电保护技术发展趋势分析

(整期优先)网络出版时间:2015-08-18
/ 3

智能电网环境下电力系统继电保护技术发展趋势分析

伍一弘

(广西电网有限责任公司钦州供电局535000)

摘要:智能电网是我国电力工业发展的新方向,继电保护作为保障电网安全运行的第一道防线,需要积极适应电网变革。本文阐述了电力系统继电保护的概念、组成结构,基本任务及电力系统对其的基本要求,回顾了继电保护技术的发展历史,讨论了其发展现状,最后了继电保护技术的未来发展方向。

关键词:继电保护;速动;微机化;网络化

1.继电保护的概念、组成、任务及其基本要求

1.1继电保护的概念和基本组成

继电保护技术通常是指根据电力系统故障和危机安全运行的异常工况,提出切实可行的对策的反事故自动化措施。

一般来说,一套继电保护装置由3个部分组成,即测量部分、逻辑部分和执行部分,其结构原理图如图1所示。

(1)测量部分。测量被保护装置的工作状态电气参数,与整定值进行比较,从而判断保护装置是否应该启动。

(2)逻辑部分。根据测量部分逻辑输出信号的性质、先后顺序、持续时间等,使保护装置按一定的逻辑关系判定故障类型和范围,确定保护装置如何动作。

(3)执行部分。根据接收到的逻辑部分的信号,完成跳闸、发出信号等动作。

1.2电力系统中继电保护的基本任务

继电保护是保证电力系统安全运行、提高经济效益的有效技术,其基本任务:

(1)自动的、迅速的、有选择性的将故障元件从电力系统切除,迅速恢复非故障部分的正常供电;

(2)能正确反映电气设备的不正常运行状态,并根据不正常工作情况和设备运行维护条件的不同发出信号,以便值班人员进行处理,或由装置自动调整;

(3)与供配电系统的自动装置,如自动重合闸装置ARD、备用电源自动投入装置APD等配合,根据电网运行方式,选择短路类型,选择分值系数,缩短事故停电时间,提高供电系统的运行可靠性。

1.3电力系统中对继电保护的基本要求

判断继电保护装置是否符合标准,必须在技术上满足以下条件:选择性、速动性、灵敏性和可靠性这四个基本要求。而对于其他一些较轻微的故障,继电保护要求也因此降低了,发生故障时可动作于发信号来满足保护条件即可。

(1)选择性

当电力系统中线路或设备发生短路故障时,负责本段线路胡设备的继电保护装置会动作,当其拒动时,会由相邻设备或线路的保护装置将故障切除;

(2)速动性

电力系统发生故障时,电力系统中继电保护装置应能够快速地将故障切除,防止对人或电力设备、公共财产造成不必要的伤亡损失降低设备的损坏程度,提高系统并列运行的稳定性;

(3)灵敏性

当电力系统中线路或设备发生短路故障时,电力系统保护装置的及时反应动作能力,能够满足灵敏性的要求的继电保护,在规定范围内发生故障时,不论短路点的短路的类型和位置如何,以及短路点是否存有过渡电阻,都能够正确反应并动作,即要求不仅在系统的最大运行方式下三相线路短路时能够可靠动作。电力系统中保护装置的灵敏度大小是由灵敏系数来衡量;

(4)可靠性

即是继电保护设备能够安全稳定的工作动作,不误动、不拒动是对继电保护装置最根本要求。

选择性、速动性、灵敏性和可靠性这四个基本要求既相互联系又相互制约,我们应视具体问题而定,辩证的利用这四个要求合理做出机电保护装置的设定。

2.继电保护发展历程与现状

电力系统的发展带动了继电保护的不断发展。在二十世纪初期,电力电网系统的发展,继电器广泛开始在电力系统的保护中应用,这个时期是继电保护装置技术发展的开端。自二十世纪五十年代到九十年代末,在四十多年的时间里,电力系统继电保护装置完成了发展的四个阶段,从电磁式继电保护装置到晶体管式的继电保护装置再到集成电路的继电保护装置及微机继电保护装置。

继电保护装置及微机继电保护装置。十九世纪后期,电力系统结构日趋复杂,电力系统的飞速发展,短路容量的不断增大,到二十世纪初期产生了作用于断路器的电磁型的继电保护装置。虽然在一九二八年电力电子器件已开始与保护装置相结合,但电子型的静态继电器的大量生产和推广,只是在当时五十年代晶体管与其他的固态元器件发展起来之后才能够得以实现。静态继电器具有较高的灵敏度及维护简单、作速度、寿命长、消耗功率小、体积小等优点,但容易受外界干扰和环境温度的影响。随后在一九五六年出现了应用计算机研发的数字式继电保护。大规模的模集成电路技术飞速发展,微型计算机和微处理机普遍的应用,极大地推动了数字式继电保护技术开发与研究,目前微机式数字保护技术正处于日新月异的研究与试验阶段,并已有少量装置已电力系统的容量逐渐增大,应用范围越来越广是当今电力电网企业所面临的一个重要问题,仅仅是将系统的各元件的继电保护装置设置完善,远远不能避免。电力电网中因长时间停电造成的事故与经济损失。当电力电网系统正常运行被破坏时,尽可能的将其影响的范围限制到最小,负荷停电的时间减小到最短这是电力系统保护的任务。因此必须从电力系统的全局出发,研究的故障元件被相应的继电保护装置动作并切除后,系统将呈现何种状况,如何尽快的恢复正常运行等等。此外,炉、机、电任一部分的故障都将影响到电能的生产安全,特别是在大机组和大电力系统中的相互协调和影响正成为电能生产安全的重大课题。因此,保证炉、机、电的安全运行已经成为继电保护的一项重要任务。

3.继电保护的未来发展方向

随着计算机技术、电子技术、通信技术的飞速发展,人工智能技术如遗传算法、人工神经网络、模糊逻辑、进化规模等相继在电力系统继电保护的领域研究中应用,电力系统继电保护技术已向网络化、计算机化、一体化方向不断发展。

3.1继电保护的计算机化

按照著名的摩尔定律,芯片上的集成度每隔18-24个月翻一番。其结果是不仅计算机硬件的性能成倍增加,价格也在迅速降低。微处理机的发展主要体现在单片化及相关功能的极大增强,片内硬件资源得到很大扩充,单片机与DSP芯片二者技术上的融合,运算能力的显著提高以及嵌入式网络通信芯片的出现及应用等方面。这些发展使硬件设计更加方便,高性价比使冗余设计成为可能,为实现灵活化、高可靠性和模块化的通用软硬件平台创造了条件。

我国在2000年220kV及以上系统的微机保护率为43.99%,线路微机保护占86%,到2003年底,220kV以上系统的微机保护已占到70.29%,线路的微机化率达到97.6%。实际运行中,微机保护的正确动作率要明显高于其他保护,一般比平均正常动作率高0.2-0.3个百分点。

继电保护装置的计算机化是不可逆转的发展趋势。电力系统对微机保护的要求不断提高,除了保护基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信功能,与其他保护、控制装置和调度联网以供享全系统数据、信息和网络资源的能力、高级语言编程等。

3.2继电保护的网络化

网络保护是计算机技术、通信技术、网络技术和微机保护相结合的产物,通过计算机网络来实现各种保护功能,如线路保护、变压器保护、母线保护等。网络保护的最大好处是数据共享,可实现本来由高频保护、光纤保护才能实现的纵联保护。另外,由于分站保护系统采集了该站所有断路器的电流量、母线电压量,所以很容易就可实现母线保护,而不需要另外的母线保护装置。

电力系统网络型继电保护是一种新型的继电保护,是微机保护技术发展的必然趋势。它建立在计算机技术、网络技术、通信技术以及微机保护技术发展的基础上。网络保护系统中网省级、省市级和市级主干网络拓扑结构,以及分站系统拓扑结构均可采用简单、可靠的总线结构、星形结构、环形结构等。分站保护系统在整个网络保护系统中是最重要的一个环节。分站保护系统有两种模式:一是利用现有微机保护;另一个是组建新系统,各种保护功能完全由分站系统保护管理机实现。由于继电保护在电网中的重要性,必须采取有针对性的网络安全控制策略,以确保网络保护系统的安全。

3.3继电保护的智能化

随着计算机技术的飞速发展及计算机在电力系统继电保护领域中的普遍应用,新的控制原理和方法不断被应用于计算机继电保护中,近年来人工智能技术如专家系统、人工神经、网络、遗传算法、模糊逻辑、小波理论等在电力系统各个领域都得到了应用,从而使继电保护的研究向更高的层次发展,出现了引人注目的新趋势。例如电力系统继电保护领域内出现了用人工神经网络(ANN)来实现故障类型的判别、故障距离的测定、方向保护、主设备保护等。在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一种非线性问题,距离保护很难正确做出故障位置的判别,从而造成误动或拒动;如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。

随着人工智能技术的不断发展,新的方法也在不断涌现,在电力系统继电保护中的应用范围也在不断扩大,为继电保护的发展注人了新的活力。将不同的人工智能技术结合在一起,分析不确定因素对保护系统的影响,从而提高保护动作的可靠性,是今后智能保护的发展方向。虽然上述智能方法在电力系统继电保护中应用取得了一些成果,但这些理论本身还不是很成熟,需要进一步完善。随着电力系统的高速发展和计算机、通信等各种技术的进步和发展,可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。

3.4保护、控制、测量、数据通讯一体化

在实现继电保护的计算机化和网络化的前提下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可以从网络上获取电力系统运行和故障的任何信息和数据,也可将它获得的任何被保护元件的信息和数据传送给网络控制中心或任意终端,即实现了保护、控制、测量、数据通讯一体化。如果将保护装置就地安装在室外变电站的被保护装置旁,则可以免除大量的控制电缆。

现在光电流互感器(OTA)和光电压互感器(OTV)已处于研究试验阶段,将来必然在电力系统继电保护装置中得到应用。

4.结论

随着电力系统的高速发展和计算机技术、网络技术和人工智能技术的进步,继电保护技术面临着进一步发展的趋势。其发展将出现原理突破和应用革命,由数字时代跨入信息化时代,发展到综合自动化水平。这对继电保护工作者提出了艰巨的任务,也开辟了活动的广阔天地。

参考文献:

[1]杨奇逊.微型机继电保护基础[M].北京:水利电力出版社,1988.

[2]陈向东.电力系统网络型继电保护模式探讨[J].电力信息化,2009,7(1):38-40.

[3]张宇辉.电力系统微型计算机继电保护[M].北京:中国电力出版社,2000.

[4]葛耀中.新型继电保护与故障测距原理与技术[J].西安:西安交通大学出版社,1996.

[5]吕卫胜.人工智能技术在电力系统继电保护中的应用[J].山东电力技术,2006,147(1):61-63.

作者简介:

伍一弘(1987.4-),男,广西南宁人,广西电网钦州供电局变电管理所,继电保护班中级作业员单位:广西电网有限责任公司钦州供电局,研究方向:电力系统继电保护。