送电线路综合防雷措施探析张瑜

(整期优先)网络出版时间:2018-05-15
/ 2

送电线路综合防雷措施探析张瑜

张瑜陈晨徐壮

中冶沈勘秦皇岛工程设计研究总院有限公司河北省秦皇岛066004

摘要:随着我国经济的快速发展,工业以及民用设施对于电力供应的需求越来越大,而对于供电线路的可靠性的要求也越来越高。伴随着我国电网线路的飞速发展与大力建造,电网因雷击引起的线路跳闸和停电事故,也随着日益的增多。因雷击引起的输电线路事故率也在不断的提高,同时也给我们的日常工作生活带来了很大的不便,给国家的经济也带来了很大损失。如果要想保证输电线路的安全运行,就应该对雷击的原因进行有效的调查与分析,这样才能够更好的采取相应的防雷措施。

关键词:送电线路;防雷措施

一、目前高压送电线路防雷现状

目前高压送电线路本身的防雷措施主要依靠架设在杆塔顶端的架空地线,其运行维护工作主要是对杆塔接地电阻的检测及改造。由于其防雷措施的单一性,无法达到防雷要求。而推行的安装耦合地线、增强线路绝缘水平的防雷措施,受到一定的条件限制而无法得到有效实施,如通常采用增加绝缘子片数或更换为大爬距的合成绝缘子的方法来提高线路绝缘,对防止雷击塔顶反击过电压效果较好,但对于防止绕击则效果较差,且增加绝缘子片数受杆塔头部绝缘间隙及导线对地安全距离的限制,因此线路绝缘的增强也是有限的。

二、雷击线路跳闸原因

高压送电线路遭受雷击的事故主要与四个因素有关:线路绝缘子的50%放电电压;有无架空地线;雷电流强度;杆塔的接地电阻。高压送电线路各种防雷措施都有其针对性,因此,在进行高压送电线路设计时,我们选择防雷方式首先要明确高压送电线路遭雷击跳闸原因

1.高压送电线路绕击成因分析。根据高压送电线路的运行经验、现场实测和模拟试验均证明,雷电绕击率与避雷线对边导线的保护角、杆塔高度以及高压送电线路经过的地形、地貌和地质条件有关。山区高压送电线路的绕击率约为平地高压送电线路的3倍。山区设计送电线路时不可避免会出现大跨越、大高差档距,这是线路耐雷水平的薄弱环节;一些地区雷电活动相对强烈,使某一区段的线路较其它线路更容易遭受雷击。

2.高压送电线路反击成因分析。雷击杆、塔顶部或避雷线时,雷电电流流过塔体和接地体,使杆塔电位升高,同时在相导线上产生感应过电压。如果升高塔体电位和相导线感应过电压合成的电位差超过高压送电线路绝缘闪络电压值,即Uj>u50%时导线与杆塔之间就会发生闪络,这种闪络就是反击闪络。

三、高压送电线路设计防雷措施

清楚了送电线路雷击跳闸的发生原因,我们就可以有针对性的对设计中送电线路经过的不同地段,不同地理位置的杆塔采取相应的防雷措施。

1.加强高压送电线路的绝缘水平。高压送电线路的绝缘水平与耐雷水平成正比,加强零值绝缘子的检测,保证高压送电线路有足够的绝缘强度是提高线路耐雷水平的重要因素。我们在设计高压线路时充分比较各种绝缘子的性能,分析其特性,认为玻璃绝缘子有较好的耐电弧和不易老化的优点,并且绝缘子本身具有自洁性能良好和零值自爆的特点。特别是玻璃是熔融体,质地均匀,烧伤后的新表面仍是光滑的玻璃体,仍具有足够的绝缘性能,所以设计中我们多考虑采用玻璃绝缘子。

2.降低杆塔的接地电阻。高压送电线路的接地电阻与耐雷水平成反比,根据各基杆塔的土壤电阻率的情况,尽可能地降低杆塔的接地电阻,这是提高高压送电线路耐雷水平的基础,是最经济、有效的手段。对于土壤电阻率较高的疑难地区的线路,则应跳出原有设计参数的框框,特别是要强化降阻手段的应用,如增加埋设深度,延长接地极的使用,就近增加垂直接地极的运用

3架设耦合地线

因为我国区域间存在着很大的差异,所以各个地方的土质也不一定相同,有时候不能达到输电塔接地电阻降低的目的。所以,就必须要通过,在导线下方架设一个地线的促使,它的主要作用是增加避雷线与导线间的耦合作用,通过这种耦合作用来降低绝缘子串上的电压。此外,耦合地线还可以在送电线路,遭受到雷击的时候,增加对雷电流分流的作用。通过大量的实践与耦合地线的应用,显示出了这一方法,对于送电线路受到雷击时,产生的跳闸,有很大的作用,而这一作用最明显的效果是在山区和东南沿海。

4采用不平衡纳维方式

在现代送电线路中和高压送电线路中,对于同杆架设的双回线路应用日益增多,对此类线路,在通常采用的防雷措施,暂时不能满足要求的时候,还可采用不平衡绝缘方式,来降低双回路雷击同时跳闸率,以此来保证送电线路不中断供电。不平衡绝缘的原则是,使二回路的绝缘子串片数有差异,这样,雷击时绝缘子串片数少的回路先闪络,闪络后的导线相当于地线,增加了对另一回路导线的耦合作用,提高了另一回路的耐雷水平使之不发生闪络,以保证另一回路可继续供电。

5装设自动重会闸

由于雷击所造成的绝缘子闪络,其中的大多数能在跳闸后,通过本身的情况来恢复绝缘这一特性,所以重合闸,在我国应用成功率较高,据统计,我国110kV及以上高压送电线路线路,重合成功率为75~95%,35kV及以下送电线路约为60~80%。因此各级电压的送电线路应尽量装设自动重合闸。

6采用消弧线圈接地方式

对于我国雷电活动强烈的地区,而接地电阻又很难以降低的地区,可考虑采用中性点不接地,又或是经消弧线圈接地的方式。绝大多数的单相着雷闪络接地故障,将被消弧线圈所消除。而在二相或三相着雷时,雷击引起第一相导线闪路并不会造成线路跳闸或相见短路,闪络后的导线相当于地线,增加了耦合和送电线路本身的分流作用,使未闪络相绝缘子串上的电压降低,从而提高了耐雷水平,使故障的范围得以限制。

7加强雷电监测

在闪络中,单相闪络机会是最多的,闪络点也是随机的性质分布,所以对送电线路,遭受雷击的故障点的确定与检修就显的困难了。对于雷电定位系统的运用,就使得在送电线路遭受雷击时,发射管故障的地点能够更好的确定,从而帮助维修人员,更快更好的解决维修问题,同时也大大减少了检修人员的工作力度和时间。对于确保及时恢复供电,使送电线路可靠的运行,起到了保证。同时也对于雷电事故的分析,雷电活动规律、特点和其他的参数,提供了有力的数据。为送电线路防雷工作的开展起到了良好的开端与保证。

8加装避雷针

在一些雷电高发的地区,可以在送电塔的顶端加装避雷针。当然,避雷针是不能起到避雷的作用的,避雷针的作用只的负责引雷。当避雷针受到雷击时,可以使雷电流,迅速的导入大地,保护线路的正常运行,使闪络等故障,降低到最低。

9使送电杆塔更好的接地

在人为的改变接地电阻等措施以外,还可以利用送电塔的自身的金属构造来做到更好的接地效果。能否良好的接地是送电线路能够得到安全运行的保障。

五、结束语

综上所述,为防止和减少雷害故障,设计中我们要全面考虑高压送电线路经过地区雷电活动强弱程度、地形地貌特点和土壤电阻率的高低等情况,还要结合原有高压送电线路运行经验以及系统运行方式等,通过比较选取合理的防雷设计,提高高压送电线路的耐雷水平。雷电活动是一个复杂的自然现象,需要电力系统内各个部门的通力合作,才能尽量减少雷害的发生,将雷害带来的损失降低到最低限度。

参考文献

[1]苏邦礼.雷电与避雷工程[J].电力建设,2009(06)

[2]潘忠林.现代防雷技术[M].高压电技术,2011(01)