关于石灰石石膏法锅炉烟气脱硫技术中常见问题分析

(整期优先)网络出版时间:2019-07-17
/ 2

关于石灰石石膏法锅炉烟气脱硫技术中常见问题分析

刘新泉刘辉张永胡燕梅蒋习伟

(华聚能源东滩矿电厂273500)

摘要:本文首先讨论了石灰石湿法脱硫系统主要设备、系统及工艺流程,随后介绍了脱硫反应原理,并探讨了影响石灰石湿法烟气脱硫效率的因素,包括烟气温度、烟气含尘浓度、烟气中SO2浓度、烟气中O2浓度、石灰石浆液、浆液PH值、浆液密度及液气比L/G。接着就脱硫系统运行中几种经常遇到的问题进行了产生原因及应对措施的探讨,最后得出结论,该方法还需进行进一步改造以适应日趋严格的环保标准。

关键词:石灰石湿法;氧化风管及结垢;除雾器结垢及堵塞

1概述

目前,世界上燃煤电厂脱硫工艺方法很多,这些方法的应用主要取决于锅炉容量和调峰要求、燃烧设备的类型、燃料的种类和含硫量的多少、脱硫率、脱硫剂的供应条件及电厂的地理位置、副产品的利用等因素。

按脱硫工艺在生产中所处的部位不同可分为:燃烧前脱硫(如:原煤洗选脱硫)、炉内燃烧脱硫(如:循环流化床锅炉和炉内喷钙)、燃烧后脱硫即烟气脱硫(如:海水脱硫、石灰石—石膏湿法、电子束脱硫等),其中燃烧后的烟气脱硫是目前世界上控制SO2污染所用的主要手段。

石灰石湿法脱硫系统工艺流程:锅炉低温省煤器后的原烟气,进入吸收塔进行脱硫净化。在吸收塔内原烟气与石灰石浆液充分接触反应脱除其中的SO2、SO3,生成石膏,残留的亚硫酸钙在吸收塔底部的循环浆池内被氧化风机不断鼓入的空气氧化最终生成石膏晶体。同时原烟气温度进一步降低至饱和温度(约50℃)。脱硫后的净烟气经除雾器、净烟道经由烟囱排放到大气中。

2影响石灰石湿法烟气脱硫效率的因素

2.1脱硫反应原理

石灰石-石膏湿法脱硫工艺脱硫过程的主要化学反应为:

(1)在脱硫吸收塔内,烟气中的S02首先被浆液中的水吸收,形成亚硫酸,并部分电离:见公式(1)

SO2+H2O→H2SO3→H++HSO3-→2H++SO32-(1)

(2)与吸收塔浆液中的CaCO3细颗粒反应生成CaSO3˙1/2H2O细颗粒:见公式(2)(3)

CaCO3+2H+→Ca2++H2O+CO2↑(2)

Ca2++SO32-→CaSO3˙1/2H2O↓+H+(3)

(3)CaSO3˙1/2H2O被鼓入的空气中的氧氧化,最终生成石膏CaSO4˙2H2O:见公式(3)(4)

HSO3-+1/2O2→H++SO42-(3)

Ca2++SO42-+2H2O→CaSO4˙2H2O↓(4)

上述反应中第一步是较关键的一步,即S02被浆液中的水吸收。根据S02的化学特性,S02在水中能发生电离反应,易于被水吸收,只要有足够的水,就能将烟气中绝大部分S02吸收下来。

但随着浆液中HSO3-和SO32-离子数量的增加,浆液的吸收能力不断下降,直至完全消失。因此要保证系统良好的吸收效率,不仅要有充分的浆液量和充分的气液接触面积,还要保证浆液的充分新鲜。上述反应中第二和三步其实是更深一步的反应过程,目的就是不断地去掉浆液中的HSO3-和SO32-离子,以保持浆液有充分的吸收能力,以推动第一步反应的持续进行。

2.2烟气温度

FGD系统正常运行时,入口处原烟气温度应在规定范围之内,否则FGD系统联锁保护启动,即锅炉MFT。如果原烟气温度超过运行规定的最大值,吸收塔内的设备因高温而损坏。实际运行过程中,机组负荷变化较为频繁,入口处的原烟气温度也会随着波动,也一定程度的影响FGD系统的性能指标。一方面,吸收塔烟气温度越低,越有利于SO2气体溶于浆液,形成HSO3¯;另一方面,脱硫化学平衡反应是放热反应,温度低有利于向生成硫酸钙方向进行。

3常见问题及解决办法

3.1氧化风管结垢

氧化风喷管口区域结垢属于“湿--干”结垢。湿--干”结垢发生于“湿--干”交界区,如吸收塔烟气入口处至第一层喷嘴之间,以及最后一层喷嘴与烟气出口之间的塔壁面。由于工况变动,浆液滴进入此区域后,由于浆液中含有二水硫酸钙,半水亚硫酸钙,碳酸钙等,粘性较大,当浆液碰到壁面时,会有一部分黏附于壁面而沉降下来,同时,由于烟气温度较高,加快沉积层水分的蒸发,使沉积层逐渐形成结构致密,类似于水泥的硬垢。同样,氧化风喷口区域也是如此。氧化风管喷口处温度长期在一定温度之间波动,将使该区域频繁处于干湿变化状态,促使浆液沉积形成“湿--干”结垢。

解决办法:在氧化风喷口处设置冷却喷水管,并保持常开,控制氧化风温低于浆液温度。进而减少氧化风管喷口处温度波动幅度,降低氧化风管结垢程度。

3.2吸收塔除雾器结垢及堵塞

吸收塔循环浆液中总含有过剩的吸收剂(CaCO3),当烟气夹带这种浆体液滴被捕集在除雾器板片上而又未被及时清除时,会继续吸收烟气中未尽的SO2,发生生成亚硫酸钙/硫酸钙的反应,在除雾器板片上析出沉淀而结成垢。

解决办法:优化和完善冲洗程序和控制。首先,要保证冲洗阀门定位准确,保证阀门不内漏,调整冲洗压力为O.3MPa左右,保证冲洗效果。其次,增加下部除雾器冲洗量。

详细检查安装质量情况,对冲洗角度、冲洗高度、喷嘴高度、喷嘴数量、冲洗覆盖程度、冲洗效果、雾化效果、喷嘴分布、安装是否牢固等方面进行检查,保证冲洗效果。正常投用冲洗水过滤装置,监视其差压,有问题时及时处理防止除雾器冲洗的喷嘴被杂物堵塞。调整好吸收塔运行参数,使亚硫酸盐氧化充分,PH控制稳定,及时检修处理有故障的供浆调节门,避免或减少除雾器结垢。运行人员应密切监视除雾器的冲洗压力、流量、差压等参数,及时发现和通知检修人员处理除雾器冲洗阀门内漏、阀门故障、冲洗压力不够、吸收塔持续高位等原因,使除雾器自动冲洗程控保持正常投运。运行维护人员熟记并记录好脱硫系统初次启动时或正常运行时的参数和数据,发生变化时一定要分析和查找原因。每隔6个月(最好是3个月)必须进行除雾器检查,视具体情况并人工手动冲洗干净。检查脱硫装置其它管道冲洗门内漏情况,并及时处理,防止其它水进入系统,确保系统运行时水平衡。

3.3吸收塔浆液起泡及溢流

起泡原因分析,锅炉在运行过程中投油、燃烧不充分,未燃尽成份随锅炉尾部烟气进入吸收塔,造成吸收塔浆液有机物含量增加。锅炉后部除尘器运行状况不佳,烟气粉尘浓度超标,含有大量惰性物质的杂质进入吸收塔后,致使吸收塔浆液重金属含量增高。重金属离子增多引起浆液表面张力增加,从而使浆液表面起泡。脱硫用石灰石中含过量MgO(起泡剂),与硫酸根离子反应参生大量泡沫(泡沫灭火器利用的是这个原理)。脱硫装臵脱水系统或废水处理系统不能正常投入,致使吸收塔浆液品质逐渐恶化。锅炉燃烧情况不好,飞灰中有部分碳颗粒或焦油随烟气进入吸收塔。运行过程中出现氧化风机流速不均,吸收塔浆液气液平衡被破坏,致使吸收塔浆液大量溢流。

处理措施:从吸收塔排水坑定期加入脱硫专用消泡剂。在吸收塔最初出现起泡溢流时,消泡剂加入量较大,在连续加入一段时间后,泡沫层逐渐变薄,减少加入量,直至稳定在一定加药量上。在可以暂时忽略脱硫效率的条件下,停运一台浆液循环泵以减小吸收塔内部浆液的扰动,同时减少浆液供给量。因为浆液循环量大时,浆液起泡性强。在可以保证氧化效果的前提下,适当降低吸收塔工作液位,减小浆液溢流量,防止浆液进入吸收塔入口烟道。降低排除石膏时的吸收塔浆液密度,加大石膏排除量,保证新鲜浆液的不断补入。坚持脱硫废水的排放,从而降低吸收塔浆液重金属离子、Cl-、有机物、悬浮物及各种杂质的含量,保证吸收塔内浆液的品质。严格控制脱硫用工艺水的水质,加强过滤和预处理工作,降低COD、BOD。同事严格控制石灰石原料,保证其中各项组分(如MgO、SiO2等)含量符合实际要求。加强吸收塔浆液、废水、石灰石浆液、石灰石粉和石膏得化学分析工作,有效监控脱硫系统运行状况,发现浆液品质恶化趋势,及时采取处理手段。

4结论

湿式钙法(石灰石-石膏法)作为当前世界上技术最成熟、运行状态最稳定的脱硫工艺,已经可以满足目前的环保指标要求。虽然在实际运行过程中,也存在一些缺陷,但是可以通过设计、安装、及运行调整等方面进行优化来保持系统的稳定、健康运行。

在将来,行业将面临更加严苛的环保要求,东部地区新建燃煤发电机组大气污染物排放浓度基本达到燃气轮机组排放限值,中部地区原则上接近或达到燃气轮机组排放限值,并鼓励西部地区接近或达到燃气轮机组排放限值。这要求我们需进一步研究更加高效的排放技术,为青山绿水贡献自己的一份绵薄之力。