学科分类
/ 2
38 个结果
  • 简介:采用Al片和SiO2粉末为原料,以H2为保护气氛,通过气相沉积方法合成Al2O3纳米片。采用XRD、SEM、TEM和EDS等分析表征手段研究合成的Al2O3纳米片的物相组成、显微形貌和微区成分。结果表明:合成的Al2O3纳米片具有光滑平整的表面,厚度为100-300nm,具有完好的菱方六面体结构。通过纳米压痕仪对合成的α-Al2O3纳米片的力学性能进行原位表征,利用Oliver-Pharr方法由加载.卸载曲线直接计算纳米片的硬度和弹性模量,经计算得知α-Al2O3纳米片的硬度值为26±5GPa,略高于单晶α-Al2O3块体材料;弹性模量为249+32GPa,仅相当于对应的单晶块体材料的55%左右。

  • 标签: 氧化铝 纳米片 气相沉积 纳米压痕 力学性能
  • 简介:采用反应磁控溅射法分别在单晶硅(100)和不锈钢基底上沉积不同W含量的Zr1-xWxN(x=0.17,0.28,0.36,0.44,0.49)复合,利用扫描电镜、能谱仪、X射线衍射仪、纳米压痕仪和摩擦磨损试验机研究该复合薄膜的微结构、力学性能及摩擦性能,并探讨ZrWN复合的摩擦机理。结果表明:当x≤0.28时,复合呈fcc(Zr,W)N结构;当x为0.36~0.44时,复合呈fcc(Zr,W)N和fccW2N结构;当x=0.49时复合为fcc(Zr,W)N、fccW2N结构和β-W单质。Zr1-xWxN复合的硬度随x增加先增大后减小,当x=0.44时达到最大值,为36.0GPa。随x增加,Zr1-xWxN复合的室温摩擦因数先减小后增大,摩擦表面生成的氧化物WO3对于降低摩擦因数起重要作用。

  • 标签: ZrWN复合膜 微结构 力学性能 摩擦性能
  • 简介:以ZnO粉末为原料,用N2作为载气,采用无催化辅助的热蒸发法沉积制备ZnO纳米结构,分别用X线衍射仪、扫描电镜和透射电镜对ZnO的物相、形貌和结构进行表征,并结合晶体生长理论和实验条件,对ZnO产物的形貌变化和纳米带生长方向进行研究。结果表明:离气源较近的位置到离出口较近的位置,ZnO纳米结构的形貌由连续颗粒逐渐向纳米带、直径大于100nm和直径小于100nm的纳米线变化。特别是发现ZnO纳米带除了常见的[001]生长方向外,还有[101]和[203]两种极为罕见的生长方向,这些纳米带都具有上下表面均由(±010)晶面组成的特点。ZnO产物的形貌变化是其生长过程由动力学控制为主转向热力学控制为主的结果,纳米带生长方向不同,可能与其晶核形成过程中的竞争生长有关。

  • 标签: ZNO 纳米结构 热蒸发沉积 纳米带 纳米线 生长方向
  • 简介:采用水热法制备铈稳定钪掺杂氧化锆的超细纳米晶。利用X射线衍射仪、傅里叶红外光谱仪分别研究水热产物的物相和结构,结合热重-差热分析仪分析水热反应过程物相与能量的变化,通过透射电子显微镜研究pH值对水热产物颗粒大小与聚集状态的影响。结果表明,在200℃、pH=8、反应时间为3h时,得到的水热产物为立方单相,粒径约为4nm。当pH值升高到10时,立方相的颗粒出现长大和团聚现象,平均粒径约为6nm。

  • 标签: 水热法 铈稳定钪掺杂氧化锆 纳米晶
  • 简介:以干法成形技术制备的炭纤维坯体为预制体,酚醛树脂作粘结剂,通过浸渍、模压、炭化、CVD和石墨化制备质子交换燃料电池用炭纸。借助扫描电镜(SEM)观察炭纸表面形貌,用四探针法测试炭纸面电阻。研究结果表明:浸渍模压与CVD复合工艺在炭纤维表面形成连续均匀的热解炭层,增强纤维与基体的结合,减少裂纹缺陷,提高炭纸的导电性能;炭纸横向和纵向的面电阻分别为0.34Ω和0.37Ω,小于日本东丽炭纸的面电阻0.43Ω和0.70Ω。

  • 标签: 质子交换膜燃料电池 化学气相沉积 浸渍模压 面电阻
  • 简介:采用浸渍技术制备多种炭/炭复合材料磷酸盐抗氧化涂层。在700℃下测试涂层的抗氧化性能,结果表明:浸渍混合成分磷酸盐涂层的炭/炭复合材料的抗氧化性能明显高于浸渍单一成分磷酸盐涂层试样,其最佳抗氧化效果为20h氧化的质量耗损率仅为0.98%。采用SEM观察相关试样氧化实验前后的表面形貌,发现单一磷酸锌或者磷酸锰的涂层在氧化时挥发严重,单一磷酸铝的涂层则发生团聚;混合组分的涂层成分的挥发则得到有效抑制,无团聚现象,并提出了混合磷酸盐的复合抗氧化机制。

  • 标签: 炭/炭复合材料 磷酸盐涂层 抗氧化
  • 简介:选取相成分单一的氢钨青铜(H0.33WO3)、铵钨青铜((NH4)0.5WO3)和紫钨(WO2.72)作为原料,研究钨原料对制取超细钨粉的影响;对氧化钨原料和超细钨粉的粒度测量方法作了比较,研究结果表明:紫钨由于有着特殊的结构,其制得的钨粉细而均匀,分散性好,是适合于做微晶硬质合金的原料;对于氧化钨原料的粒度(伪同晶颗粒尺寸,即二次颗粒)测量,推荐使用激光衍射法;对于超细钨粉粒度(一次颗粒)的炉前测量,BET法测球形相当径相当理想。

  • 标签: 超细钨粉 氧化钨 粒度测量
  • 简介:采用沉淀法,以Zn(Ac)2·2H2O和InCl3为反应物制备不同形状的纳米掺铟氧化锌(ZIO)。通过X射线衍射(XRD)和能谱分析(EDS)确定In可进入ZnO晶格,且ZIO晶化度随In掺杂量的升高而降低。铟掺杂量为0.5%、1%(原子分数)的ZIO粉体显微粒度分别为20nm、50nm,由激光衍射粒度分析可知,后者的均一性更好、中位径更小。在透射电镜(TEM)和扫描电镜(SEM)下观察薄片状、类球状、六棱柱状的ZIO,并对不同形貌的ZIO形核机理进行探讨。

  • 标签: ZIO 沉淀法 In掺杂 粒度
  • 简介:将苯胺单体滴加到硫酸溶液中配制成电解液,采用恒电流法在304不锈钢板表面沉积聚苯胺涂层,通过动电位极化和恒电位极化分析不锈钢板的防腐性能,利用自制的导电性能测试设备分析涂层与不锈钢板的界面接触电阻,探讨聚苯胺涂层用于质子交换燃料电池双极板改性的可能性。结果表明,在优化工艺条件下制备的聚苯胺涂层的腐蚀电位和腐蚀电流密度分别为369mV和0.479μA/cm^2,与裸钢相比,腐蚀电位升高536mV,腐蚀电流密度降低4个数量级。模拟质子交换燃料电池的实际工作环境进行恒电位极化曲线测试,分析测试后的溶液离子含量。结果表明,涂层改性不锈钢板的腐蚀电流密度比裸钢低2个数量级,具有很好的耐久性;阳极环境比阴极环境具有更强的腐蚀性。恒电位极化测试前,压力为1.4MPa时,裸钢和涂层试样的界面接触电阻分别为97和145mΩ·cm^2,腐蚀后涂层试样的界面接触电阻比裸钢的低更多。用聚苯胺改性的不锈钢的防腐和导电性能在一定程度上都能达到目标值,在质子交换燃料电池双极板中具有很大的应用潜力。

  • 标签: 双极板 质子交换膜燃料电池 聚苯胺涂层 防腐蚀 界面接触电阻
  • 简介:采用两步水热法制备钇稳定氧化锆(YSZ)的超细纳米颗粒。利用X射线衍射仪、透射电子显微镜研究pH值以及分散剂和阳离子浓度对YSZ粉体的相组成、相结构和晶粒大小的影响。结果表明,两步水热法制得的YSZ粉体具有立方相结构,平均晶粒尺寸约为6nm;pH值越大,越利于立方相的生成,pH为12时,YSZ粉体为纯立方相;无水乙醇作为分散剂,可以有效地减少粉体的团聚;阳离子浓度过高时(2mol/L),不利于立方相生成,在阳离子浓度适当(约0.02~0.05mol/L)的前提下,稍大的阳离子浓度得到的粉体粒径较小,团聚较少,最佳的阳离子浓度为0.05mol/L。

  • 标签: 氧化钇稳定氧化锆 两步水热法 超细纳米颗粒
  • 简介:研究不同温度下,并流和分步加料方式对葡萄糖还原法制备的氧化亚铜形貌及粒度的影响。结果表明:采用并流加料制备氧化亚铜,其粒度随温度升高而减小,而分步加料方式与之相反。采用NaOH和C6H12O6溶液并流加料方式下,所得氧化亚铜为晶粒直径10~30nm的规则球形颗粒,反应温度对形貌影响不大,且粒度随温度升高而减小;而分步加料方式下,50℃所得氧化亚铜颗粒形貌为类球形;随温度升高逐渐转变为立方堆积体,但颗粒粒度却随温度升高而增大。

  • 标签: 加料方式 氧化亚铜 形貌 制备
  • 简介:C/C复合材料在高于450℃的空气(氧化气氛)中会显著氧化,可采用基体抗氧化和涂层抗氧化来防止其氧化.作者采用在基体材料表面预先浸涂浸渍剂,再涂刷涂层并将涂层固化处理制备涂层的工艺方法,制备出抗氧化性能良好的抗氧化涂层.预浸涂处理可使材料的起始氧化温度提高近200℃.单独预浸涂以硼酸、TEOS为主的浸渍剂抗氧化效果不明显,而预浸涂以磷酸+硼酸混合液、磷酸为主的浸渍剂效果较好.其最佳抗氧化效果为900℃×2h静态氧化失重率为0.33%,900℃×4h静态氧化失重率为1.13%.对以硼酸、磷酸和TEOS及其混合液为主的浸渍剂的抗氧化机理进行了探讨.

  • 标签: C/C复合材料 抗氧化 预浸渍 顸浸涂 浸渍剂
  • 简介:采用阴极弧蒸发技术在A120,、低合金钢和硬质合金刀片上沉积Ti与Al原子比相近的Al-Ti-N和Al-Ti-Ni.N涂层,借助X射线衍射(XRD)、扫描电镜(SEM)、纳米压痕、划痕实验和氧化实验,研究Si掺杂对Al-Ti-N涂层的结构、力学性能和抗氧化性能的影响。结果表明:Al-Ti-N涂层为以立方为主的立方和六方的两相结构,Si掺杂可降低TiN中Al的固溶度,使涂层转化为以六方为主的六方和立方的两相结构;Si的加入导致涂层硬度由34.5GPa降到28.7GPa;Si掺杂引起涂层的应力增加,从而导致涂层与基体的结合强度降低;Al-Ti-N涂层的抗氧化性能随si的加入而显著改善,抗氧化温度提高到1000℃以上。

  • 标签: Al-Ti-N Al-Ti-Si-N 硬度 抗氧化性 涂层
  • 简介:采用粉末冶金法制备Ti(C,N)基金属陶瓷,研究粘结相Co与Ni的含量比对材料组织结构和性能的影响,并系统研究材料在高温环境和酸性水溶液中的氧化与腐蚀行为。结果表明,w(Co)/w(Ni)=1的金属陶瓷材料T3具有优异的综合力学性能,其抗弯强度与硬度(HRA)分别为1749MPa和93.8;随着Ni的添加,材料在H2SO4溶液中的耐腐蚀性能显著提高,其中的T3经120h浸泡腐蚀后质量损失率为0.0745%,粘结相和部分环形相的溶解为金属陶瓷在酸溶液中的主要腐蚀行为。随w(Co)/w(Ni)的值减小,材料阳极极化过程中不同钝化区出现融合,证明Ni含量增加可促进元素向粘结相中的固溶,T3材料具有优异的耐腐蚀性能,自腐蚀电流密度为3.3566×10^-7A/cm^2。表面积为2.5cm^2的Ti(C,N)基金属陶瓷,在900℃高温静态空气中氧化10h后,质量增加量均小于1mg,材料的氧化机理以粘结相优先氧化和富Ti、W固溶相的氧化腐蚀为主。

  • 标签: w(Co)/w(Ni) TI(C N)基金属陶瓷 浸泡腐蚀 电化学腐蚀 高温氧化
  • 简介:以Nb2O5、In(NO3)3和Sm(NO3)3为原料,采用溶胶-凝胶法制备新型光催化材料Sm2InNbO7。采用X射线衍射(XRD)、扫描电镜(SEM)、比表面积分析(BET)以及紫外-可见漫反射光谱(UV-Visdiffusereflectancespectroscopy)技术对该材料的结构、形貌和光吸收性能进行表征。以可见光下亚甲基蓝(MB)的脱色降解为模型反应,考察煅烧温度、催化剂用量、H2O2用量和pH值对Sm2InNbO7光催化性能的影响。结果表明,煅烧温度为700℃时即可获得具有烧绿石结构的Sm2InNbO7。随焙烧温度升高,催化剂结晶度增加,粒径增大,比表面积下降,吸收边界出现一定的蓝移;在850℃下煅烧3h获得的Sm2InNbO7样品具有最高的催化活性,当50mL质量浓度的10mg/L的MB溶液中催化剂用量为0.1g、30%H2O2溶液用量为0.5mL、pH=6时,亚甲基蓝的降解率高达93.8%,明显优于固相法制备的Sm2InNbO7以及P-25TiO2。较高的pH值有利于光催化反应的进行。

  • 标签: 溶胶?凝胶法 光催化 烧绿石结构 合成
  • 简介:采用包埋-刷涂法在C/C复合材料表面制备SiC/ZrSiO4复合涂层,借助X射线衍射(XRD)、扫描电镜(SEM)和能谱分析(EDS)等测试手段分析该复合涂层的微观结构,并研究SiC单涂层和SiC/ZrSiO4复合涂层在1500℃静态空气中的抗氧化性能。结果表明:包埋法制备的SiC内涂层结构疏松,具有较好的抗氧化性能,氧化55h后质量损失率仅为0.5%,但氧化58h后,涂层内部形成大孔洞并产生贯穿孔隙,导致涂层失效,质量损失率迅速增加到2.1%。SiC/ZrSiO4复合涂层由非均质镶嵌式结构的ZrSiO4涂层紧密覆盖在SiC内涂层表面而成,具有优异的抗氧化性能,氧化198h后质量仅增加0.5%,并且基本不再随时间延长而增加;复合涂层不仅能自愈合外涂层的缺陷和裂纹,还能抑制氧化过程中大孔洞的形成,避免贯通孔隙的产生。

  • 标签: SiC/ZrSiO4复合涂层 SIC涂层 抗氧化性能 C/C复合材料
  • 简介:以六水合氯化钴(CoCl2·6H2O)和水合三氯化钌(RuCl3·3H2O)为前驱体,采用胶体法制备超级电容器用(RuO2/Co3O4)·nH2O复合薄膜电极材料。用X射线衍射仪以及CHl660C电化学工作站对该复合薄膜的物相结构及电化学性能进行表征。结果表明:当COCl2'6H20和RuCl3·3H2O的物质的量比n(Co):n(Ru)为2:1时,于350℃下热处理2.5h制备的复合薄膜电极具有优良的性能,在浓度为0.5mol/L的H2S04电解液中其比电容达到512F/g,500次充放电循环后比电容量保持在充放电循环前的96.1%;充放电电流为0.01A时,内阻为1.2Ω。

  • 标签: 超级电容器 胶体法 薄膜电极 比电容
  • 简介:为了使航天发动机中镍合金在高温,高压,富氧条件下安全高效地工作,以镍粉及玻璃相为原料制成料浆,采用流涂法在航天发动机用镍基合金GH4586表面制备高温含镍的B2O3-A12O3-BaO-CeO2-ZrO2(Ni/BACZ)金属陶瓷涂层。通过扫描电镜和X射线衍射分析涂层的表面和截面组织形貌以及相组成,采用拉伸实验、氧化试验和热震实验分析涂层性能。结果表明:Ni/BACZ涂层结构致密,主要物相为Ni、Al2O3和CeBO3。涂层与基体结合牢固,结合强度大于55MPa。900℃氧化条件下,涂层的抗氧化性能相比无涂层基体提高7倍以上。Ni可减少涂层高温热应力产生的裂纹,增加涂层韧性,使其具有良好的抗热震性能。

  • 标签: GH4586材料 金属陶瓷涂层 结合强度 抗氧化 抗热震