学科分类
/ 1
20 个结果
  • 简介:本文介绍了酒钢烧结添加低温矿化节能添加剂工业试验。工业试验结果表明,往烧结用焦粉中添加万分之四的低温矿化节能添加剂。烧结固体燃耗降低3.62kg/t,降低率为7.80-/0;烧结机台时产量提高5.53t/台时,提高率为3.06%;返矿率降低1.56个百分点。

  • 标签: 节能添加剂 工业试验 烧结 矿化 低温 酒钢
  • 简介:在酒钢现有的煤源条件下,焦煤资源十分有限,因减少主焦煤的用量,以1/3焦煤及气煤代替,焦炭的质量严重下滑,在此基础上研究采用焦炭中添加添加剂的方法改善焦炭热性能。降低焦炭的反应性(CRI),提高焦炭的反应后强度(CRS)。

  • 标签: 焦炭 焦煤 气煤 添加剂 代替 煤源
  • 简介:辽宁省辽阳市化轻总公司助剂厂开发的汽、柴油添加剂,是被国家科委列入全国首批“火炬计划”的高效节能新材料开发项目。这种添加剂适用于各类汽车、摩托车、拖拉机、船舶、发电机等汽柴油内燃机,应用范围广。经有关权威部门检测及用户路试,证明该产品可普遍节油10%以上,减少

  • 标签: 汽柴油 国家科委 节能新材料 助剂厂 路试 “火炬计划”
  • 简介:结合烧结生产实际,对烧结机智能门控制系统进行了详细分析。主要从烧结机混合料料层控制、烧结终点控制两个方面进行详细介绍。结合现场工况,从设备及控制上进行改进和提高,最终形成完整的烧结智能门控制系统。

  • 标签: 烧结 混合料 料层 烧透点 智能控制系统
  • 简介:膨润土用作冶金球团矿生产的粘结剂,具有成球性能好、资源充足的优点,已为世界广泛采用。但膨润土SiO2、Al2O3含量高,若膨润土的配比过大,会降低球团矿品位,增加高炉冶炼的渣量,高炉利用系数下降,焦比上升,且不利于高炉实现富氧喷煤。所以,降低膨润土的用量,对提高经济效益有非常显著的作用。

  • 标签: 复合粘结剂 球团试验 添加 高炉利用系数 Al2O3 膨润土
  • 简介:由江苏省科委立项,华东工学院承担的“新型稀土柴油添加剂”新产品开发项目,经过二年的研制,各项技术指标达到了计划任务书的要求,于1992年7月29日由江苏省科委主持在华东工学院通过了“新型稀土柴油添加剂”技术成果和产品鉴定会。来自江苏工学院、山东工业大学、上海内燃机研究所、南京内燃机厂、江苏省环境科学研究所等单位的内燃机

  • 标签: 新型稀土 计划任务书 新产品开发项目 技术指标 产品鉴定 公斤成本
  • 简介:文章介绍了重油添加剂"迪拉克"在贵州铝厂的应用情况,认为该项技术在贵州铝厂的应用是有成效的,在节能方面具有显著的经济和社会效益.

  • 标签: 重油 添加剂 燃烧 节能 炼铝
  • 简介:记者4月23日从国务院食品安全委员会办公室获悉,为严厉打击食品生产经营中违法添加非食用物质、滥用食品添加剂以及饲料、水产养殖中使用违禁药物,卫生部、农业部等部门根据风险监测和监督检查中发现的问题,不断更新非法使用物质名单,至今已公布151种食品和饲料中非法添加名单,

  • 标签: 食品安全委员会 国务院 名单 违法 添加物 食品添加剂
  • 简介:强化备件、材取样报捡工作,可以遏制供货方掺杂使假,保证备件、材满足生产周期需要,降低采购成本,从而满足公司生产经营的需要。

  • 标签: 备件、辅材 取样报检 降低 采购成本
  • 简介:研究了加入金属铝、锰、硅粉等及其复合添加剂对铝锆碳质浸入式水口的性能影响。加入适量的Mg粉、Al粉、Mn粉添加剂可有效改善Al2O3-ZrO2-C材料的显气孔率及体积密度,从而提高了材料抵抗氧化的性能。研究发现,Mn粉添加剂对试样的改善效果最好。从各性能指标看,Mn粉的加入不仅可以提高铝锆碳质浸入式水口的强度,而且对材料的抗氧化性和抗热震性有显著改善。

  • 标签: 浸入式水口 添加剂 抗氧化性
  • 简介:以SiO2、碳黑和少量添加剂(CaO,MgO或Al2O3)为原料,在流动氮气中于1350~1550℃下,对SiO2碳热还原-氮化产物进行了研究.结果表明,试样S-1,S-2分别在1400℃和1450℃加热4h后,均生成Si2N2O和Si3N4混合物;在1550℃保温4h,这2种试样生成的产物均为SiC.试样S-3在140℃和1450℃加热4h后所得产物为Si3N4和SiC.氧化物添加剂可以促进碳热还原-氮化反应的进行,并保留在生成的粉末体中,在随后的粉末热压或无压烧结中起烧结助剂的作用.

  • 标签: 二氧化硅 碳热还原-氮化 添加剂 氮化硅
  • 简介:采用铸锭冶金法制备Al-Zn-Mg-Cu-Zr合金和Al-Zn-Mg-Cu-Zr-Cr-Pr合金,再对其进行均匀化退火(460℃/24h)、锻压、固溶处理—室温水淬及峰时效处理。用金相显微镜观察合金的显微组织,并测试其力学性能,研究复合添加Zr、Cr、Pr对Al-Zn-Mg-Cu超高强铝合金再结晶行为和力学性能的影响。结果表明,复合添加Zr、Cr和Pr可显著抑制Al-Zn-Mg-Cu合金在锻压后回复过程中的亚晶合并长大,使该合金在较高温度(490℃)以及高温长时保温(480℃固溶4h)情况下仍能保持细小的亚晶组织,从而提高合金的力学性能。复合添加Zr、Cr、Pr能使合金在490℃固溶1h后在T6状态下的抗拉强度提高约25MPa、屈服强度提高近30MPa。

  • 标签: AL-ZN-MG-CU合金 再结晶 显微组织
  • 简介:采用粉末注射成形工艺制备含钕的钛合金TixNd(x为Nd的质量分数,%),采用金相显微镜、扫描电镜、电子探针以及硬度和力学性能测试等分析手段,研究钕对注射成形钛合金中氧的分布及力学性能的影响,并分析钕的最佳添加量。结果表明:随钕含量增加,合金的密度和伸长率先增加后降低,其中Ti15Nd的性能最优异,其相对密度为98.2%,强度和伸长率分别达到634MPa和6.5%,比纯钛分别提高248MPa和6.5%。纯钛的断裂面呈现解理断裂特征,而Ti15Nd为延性断裂。添加钕能提高钛合金的致密度,并且钕能吸收周围钛基体中的氧原子形成氧化钕,调节TixNd合金中氧的分布,从而有效提高合金的强度和韧性。计算证明氧化钛的分解和氧化钕的形成在热力学上是可行的。建立Ti-Nd扩散模型,考虑钕的蒸发和氧化等因素,计算得出钕的最佳添加量(质量分数)约为4.3%。

  • 标签: 注射成形 钛合金 Nd元素 显微组织 力学性能
  • 简介:采用粉末冶金法制备了2种金属陶瓷,通过X射线衍射和扫描电镜(SEM)分析发现:金属相添加方式(尤其是Al的添加方式)对陶瓷的结构和组成有较大的影响,当Al以单质形式加入时,它会改变原有尖晶石的成分,形成新的尖晶石,同时,还会导致各金属元素的局部分布不均匀现象;合金化后Al的扩散得到了较好的控制,并没有改变原有陶瓷成分.2种金属陶瓷中的陶瓷相在高温烧结中都存在不稳定性,出现了离解现象.金属含量不同,金属陶瓷中陶瓷相和金属相的烧结机理也不同.

  • 标签: 金属陶瓷 尖晶石 离解 合金化
  • 简介:采用在还原碳化法制备WC粉末前添加稀土氧化物Y2O3或CeO2,以及在WC与Co粉末混合球磨时加入该稀土氧化物两种不同的方式,在WC-10Co硬质合金中添加稀土元素,利用金相显微镜和扫描电镜观察稀土硬质合金的组织形貌与显微结构,采用X射线衍射仪(XRD)和电子探针对合金的相成分与微区成分进行分析,并测试合金的硬度、断裂韧性与磁性能,研究稀土及其添加方式对硬质合金结构与性能的影响。结果表明,无论以何种方式添加Y2O3或CeO2,最终制备的硬质合金中稀土元素都与氧共存,并以球形颗粒的形式弥散分布于硬质合金的钴粘结相中。稀土硬质合金中WC晶粒球化趋势明显,WC/WC的邻接度由0.6降低至0.39,断裂韧性由12.8MPa?m1/2提高至16.7MPa?m1/2。球形、弥散分布的稀土氧化物颗粒会破坏合金结构的连续性,导致合金强度降低。

  • 标签: 稀土 硬质合金 显微结构 邻接度
  • 简介:在气雾化HK30不锈钢粉末中分别添加0、0.4%、0.8%和1.2%的Ti粉r质量分数),采用粉末注射成形法制备HK30不锈钢样品,烧结温度为1270、1290和1310℃,研究Ti含量对HK30不锈钢的密度与抗拉强度和伸长率等力学性能以及尺寸稳定性的影响。结果表明,随Ti含量增加,HK30不锈钢样品的密度、抗拉强度和伸长率都降低;由于Ti优先与材质中的C结合,与Fe结合的C含量减少,提高了液相形成温度,致密化速率降低,使得样品尺寸稳定性提高且避免过烧。最佳的烧结方案及合适的Ti含量为1290℃/6h和0.4%Ti,在高温抗拉强度略微降低的基础上可消除样品表面过烧,并提高样品的尺寸稳定性,具有最优的综合性能:相对密度为95.7%,室温抗拉强度535MPa,800℃下抗拉强度215MPa,室温伸长率21.7%。

  • 标签: TI含量 MIM HK30 力学性能 尺寸稳定性
  • 简介:介绍了一种抑制"喷液"结晶堵管的工艺,详细分析了这一工艺形成、发展的过程,并对现有赤泥过滤机"喷液"添加方式进行改造.改造后,不仅解决了生产难题,而且实现了对赤泥浆的均化.

  • 标签: 喷液 赤泥浆 过滤机
  • 简介:研究了非离子型有机添加剂P强化铝酸钠溶液晶种分解过程的影响因素,同时引用XRD分析了不同晶种的活性。结果表明:添加剂P可有效提高分解率,显著改变产品的形貌,并具有一定增大产品粒度的作用;晶种性质极大影响添加剂的效用,特别是(002)晶面所对应的峰越强,晶种活性越好;研究了最佳工艺条件为在种分过程开始10h后加入100mg/L添加剂,保持晶种系数为3.39,最后于34h以后取出产品;晶种是分解过程的主要因素,添加剂仅能进行改善。

  • 标签: 晶种分解 添加剂 粒度 分解率 晶种活性