学科分类
/ 1
10 个结果
  • 简介:压是一项以较低的成本制造高性能铁基粉末冶金零部件的新型成形技术.实验发现,颗粒重排是压过程的主导致密化机理,而为颗粒重排提供协调性的塑性变形是另一重要的致密化机理.作者分析了影响这2个致密化机理的主要因素.在此基础上,提出了压粉末原料的设计原则,并成功设计了高性能、低成本合金钢粉末的3大体系压粉末原料.

  • 标签: 致密化机理 颗粒重排列 塑性变形 温压
  • 简介:以海绵钛作可溶阳极,纯钛板为阴极,NaCl-KCl-TiClx混合熔盐作电解质,在电解温度为900~980℃、阴极电流密度为0.1~0.6A/cm2、初始可溶钛浓度2%~8%的条件下,电解24h制备高纯钛粉,研究初始可溶钛浓度对钛粉中杂质元素含量的影响,以及电流密度和初始可溶钛浓度对电流效率及钛粉形貌的影响。结果表明,钛粉杂质含量完全达到高纯钛粉的标准,提高初始可溶钛浓度可降低杂质含量在较高的阴极电流密度以及高的初始可溶钛浓度下电解效率较高在阴极电流密度较高时钛粉为细小的树枝状晶体,而在阴极电流密度较低时得到较粗大均匀的结晶粉体。

  • 标签: 熔盐电解 高纯钛粉 电流密度 可溶钛浓度
  • 简介:与通常采用纯雾化铁粉和部分合金化铁粉作为压基粉不同,作者对水雾化Fe-Ni-Mo合金钢粉作基粉的Fe-1.5Ni-0.5Mo-1.0Cu-xC(x=0.6,0.8,1.0)粉末进行了压与烧结行为的研究.结果表明,通过设计新型聚合物润滑剂,高硬度的合金钢粉仍适用于压工艺.当粉末和模具的加热温度分别为125和145℃时,Fe-1.5Ni-0.5Mo-1.0Cu-0.8C的压密度较高.在735MPa的压力下进行压制,压坯密度达到7.35g/cm3,比室温压制提高了0.19g/cm3左右.并且,压压坯的弹性后效比室温压制降低了40%,在1120℃烧结1h后的烧结密度为7.32g/cm3.

  • 标签: 水雾化Fe-Ni-Mo合金钢粉 温压 烧结
  • 简介:特粗晶硬质合金是一类发展中的先进矿业用硬质合金。采用纳米粉末溶解法制备特粗晶硬质合金,得到WC平均晶粒尺寸为8~9μm的特粗WC-Co硬质合金,研究发现纳米粉末可通过扩散机制控制小晶粒粗化。此方法不仅使WC平均晶粒尺寸增加,而且使WC-Co硬质合金的WC晶粒尺寸分布的均匀性得到提高;同时复杂形状晶粒明显减少,晶粒发育得到改善。

  • 标签: WC-CO 特粗硬质合金 纳米粉末 溶解析出 晶粒生长
  • 简介:用喷雾热分解法(SprayPyrolysis,简称SP)制备超细或纳米粉末具有产品纯度高、成分均匀、成分间的化学计量比易控制等优点,而且制备过程连续,操作简单,成本低。目前纳米Ce02被广泛用于催化剂、燃料电池、微电子等领域,颗粒的粒度与形貌是影响CeO2粉末特性的重要因素。该文作者从控制纳米CeO2粒度与形貌的角度,总结分析近年来国内外新型或改进的SP技术及其工艺特点,介绍纳米CeO2粒子在SP过程中的形成机制和影响因素,并指出现存的问题和今后的发展趋势。

  • 标签: 喷雾热分解 CEO2 纳米粒子 制备
  • 简介:TiO2电极片的制备是熔盐电脱氧法制备金属钛的重要环节。本文采用单向模压工艺制备TiO2电极片,利用排水法、SEM、XRD等测试手段,研究成形压力、烧结温度、烧结时间、掺杂及造孔剂引入,对烧结后电极片的孔隙率、生坯密度、孔径大小、微观组织形貌和颗粒尺寸的影响。研究结果表明,TiO2中掺入5%碳粉,在30MPa压力下成形,950℃烧结4h制得的电极片具有合适的孔隙率、物相组成和微观结构,满足电解要求。

  • 标签: 熔盐电脱氧 成形压力 烧结时间 烧结温度 孔隙率
  • 简介:简述了热电偶在测温中的作用以及在测控过程中易忽视的“小问题”,对这些“小问题”的实验结果进行了理论分析,提出了热电偶正确使用和减小静、动态误差的方法。

  • 标签: 热电偶 自动控制 温度测量
  • 简介:研究了具有典型硬脆粉特性的93W-5Ni-2Cu和93W-4.9Ni-2.1Fe在不同温度下的压成形行为.结果表明:与常温成形相比,压能明显地提高压坯密度,在150℃时W-Ni-Fe和W-Ni-Cu压坯密度分别提高0.26,0.97g·cm-3;压成形能显著降低压坯的弹性后效;由于未加任何润滑剂,2种粉体压坯的脱模力均高于普通压制;W-Ni-Cu粉在相同载荷作用下,压条件下的位移大于常温下的位移;压坯经烧结后,压坯件的径向收缩小于常温坯件的径向收缩;压可以改善钨基高密度合金的显微组织.

  • 标签: 钨基高密度合金 温压 硬脆粉
  • 简介:将35CrMo钢试样在不同的加热温度和保温时间下进行等温奥氏体化处理,采用正较实验法研究加热温度与保温时间对奥氏体平均晶粒尺寸的影响,并对奥氏体晶粒长大行为进行研究。结果表明:当保温时间一定时,奥氏体晶粒尺寸随加热温度升高而增大,奥氏体晶粒的粗化温度为950℃;当加热温度一定时,奥氏体晶粒尺寸随保温时间延长而增大,保温初期晶粒快速长大,随保温时间延长,晶粒长大速率放缓。综合考虑加热温度、保温时间和初始奥氏体晶粒尺寸的影响,推导出35CrMo钢奥氏体晶粒长大模型,用该模型计算的晶粒尺寸与实验结果基本吻合。

  • 标签: 正交试验 35CRMO钢 奥氏体化 晶粒长大模型 加热温度 保温时间
  • 简介:以Ti-Al的3个化合物相(Ti3Al、TiAl和TiAl3)及Ti3Al8Mn为对象,采用密度泛函的赝势平面波法,在优化驰豫的基础上计算其电子结构和弹性模量,系统分析成分对各相电子结构的变化及脆性的影响。结果表明:Al含量逐步增多导致Al2p—Ti3d成键并抑制Ti—Ti键,使共价键以及成键的各向异性增强,因而使合金脆性增大;Mn替代Al位掺杂后,可减少Al—Al共价键,抑制Al2p—Ti3d成键并增强Mn与Ti的3d电子层杂化程度,降低由Al—Al共价键和Al2p—Ti3d杂化键形成所带来的键的空间各向异性和高位错能垒,进而改善合金的室温脆性。

  • 标签: 密度泛函 TIAL合金 MN掺杂 室温脆性