学科分类
/ 1
6 个结果
  • 简介:片状触媒在六面顶压机合成金刚石过程中,触媒片两面金刚石形核、生长情况通常存在差别,本文介绍了现有理论对此现象的解释方法及其存在的问题;在对合成腔体、合成触媒片受力分析的基础上,提出了影响碳传输的内应力机制

  • 标签: 碳传输 形核密度 重力效应 胶体理论 内应力机制
  • 简介:基于轻质、高强和耐磨等诸多优势,铝基碳化硼复合材料已成为集结构/功能一体化的新型材料。本文采用粉末冶金及轧制方法,制备出厚度3.5mm、碳化硼质量分数为33%的B4C/Al复合材料板材,并对其疲劳性能和断裂机制进行分析。在1×107循环次数下,铝基碳化硼复合材料板材的疲劳强度达到110MPa。采用SEM对疲劳断口进行观察,结果表明B4C/Al复合材料疲劳断口可清楚的看到裂纹的萌生、扩展和失稳断裂的典型特征,但存在多种形式的疲劳启裂源。疲劳裂纹扩展路径取决于裂纹尖端塑性区的半径和B4C颗粒的间距大小,当增强颗粒的间距小于塑性区半径时,裂纹主要沿着颗粒的连接界面或断裂的碳化硼颗粒扩展,当增强颗粒的间距大于塑性区半径时,有利于裂纹尖端钝化,减缓裂纹的扩展和方向改变。

  • 标签: 铝基碳化硼复合材料 疲劳性能 断裂机制 疲劳断口
  • 简介:采用CFD(computationalfluiddynamics,计算流体力学)软件系统研究超音速气雾化喷嘴两相流的雾化过程。利用VOF(volumeoffluid,流体体积)函数两相流模型模拟验证金属液不同质量流率下的2种初级破碎模式,并研究雾化压力和液体表面张力对金属液初级破碎过程的影响。模拟结果表明:金属液质量流率较小(0.053kg/s)时,初级破碎模式为液膜破碎,金属液质量流率较大(0.265kg/s)时,初级破碎模式为“微型喷泉”破碎;随雾化压力从0.5MPa增加到1.5MPa,初级破碎程度加剧,但雾化压力过高反而会削弱雾化效果;将金属液表面张力由1.2N/m降至0.4N/m,初级破碎时能够获得尺寸更细小的液滴,通过随后的二次破碎形成更加均匀细小的液滴,从而获得高质量的沉积锭。

  • 标签: 喷射成形 CFD 超音速喷嘴 两相流 破碎机制
  • 简介:对两相铝青铜合金(Cu-10%Al—4%Fe)进行等通道转角挤压(qualhannelangularextrusion,简称ECAE)热加工处理,研究ECAE对合金微观组织及摩擦性能的影响。结果表明,ECAE热挤压可显著细化铝青铜合金晶粒,并显著提高该合金的摩擦性能。未经ECAE挤压处理的铝青铜合金表面具有严重的磨粒磨损特征,而经4道次挤觚处理后其表面只呈现轻微的磨粒磨损特征。铝青铜合金的摩擦因数及磨损量均随挤压道次增加而减小,这是由于晶粒细化提高了它的硬度和强度,也闪此提高其抗塑性变形能力,从而减少磨损过程中的塑性变形,提高其耐磨性能;另外,铝青铜合金抗塑性变形能力增加,减少了磨粒对其表面的犁削作用,也提高了该合金的磨损,性能。

  • 标签: 等通道转角挤压 铝青铜 摩擦 磨损
  • 简介:采用天然岫岩玉和人工合成含镧化合物为原料,通过高能球磨制备粒径小于2μm的镧/蛇纹石复合粉体,分析该复合粉体的热力学及结构稳定性,评价其作为润滑添加剂的摩擦性能,并探索其减摩抗磨机理。结果表明:镧的加入能降低蛇纹石微粉的热力学及结构稳定性,使蛇纹石的羟基脱除速率更快、反应更彻底。复合微粉较单一的蛇纹石微粉具有更好的减摩抗磨性能,在CD15w/40柴油机润滑油中添加0.5%的镧/蛇纹石复合微粉时,摩擦因数和盘片磨损体积分别较基础油降低约34.2%和68.8%;磨损表面致密光滑,复合粉体颗粒直接参与摩擦界面复杂的物理和化学作用,诱发形成富含Si-O结构的氧化膜,该氧化膜与有机残留物产生正协同作用,提高摩擦副的磨损抗力及润滑性能,显著降低摩擦磨损。

  • 标签: 稀土 蛇纹石 热力学 磨擦磨损 机理
  • 简介:采用水热法制备表面活性剂聚甲基丙烯酸-季戊四醇四-3-巯基丙酸酯(PTMP-PMAA)修饰的具有光热效应的纳米WO3-x粉末,通过X射线衍射(XRD)分析、透射电镜(TEM)观察、X射线光电子能谱(XPS)分析、傅里叶变换红外光谱(FT-IR)分析以及紫外-可见吸收光谱(UV-Vis谱)分析及光热性能测试等,研究所得纳米粉体材料的结构及其在不同浓度与pH值下的光热性能。结果表明,水热法制备的WO3-x粉末为球形的非整比结构的W17O47,粒径小于10nm。随WO3-x的pH值降低或质量浓度降低,粉末的紫外吸光度增加,光热效应提高。pH值为6.4、质量浓度为800μg/mL的WO3-x经光热转换后,可实现在5min内约19℃的温度上升。考虑到人体体温为37℃,肿瘤部位的pH值为6.0~6.5之间,此质量浓度下纳米WO3-x粉末可用于光热治疗并实现对肿瘤细胞的杀伤效果。

  • 标签: 水热法 WO3-x pH值 浓度 光热效应 紫外吸收